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UK 
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Absmd. Explicit wave solutions are found for the electromagnetic field that develops in 
a family of strongly nonlinear dielectric media. The time frequency of oscillation Y, is 
shown to he linear in the corresponding 'wavenumber' k, which allows for a standing wave 
in afinitesystem.7hevelocityofpropagation alongtrajectoriesofeonstantfieldinspacetime 
coordinates is found to he proportional to a power of the amplitude of the field. For the 
particular oscillatory solutions, this results in wiggly, rather than straight, characteristic 
lines. 

A nonlinear response of media under the application of an external field is very 
common in nature, and is usually encountered under the application of sufficiently 
strong external fields. A strongly nonlinear medium is defined as a medium where the 
nonlinearity appears as the leading mode of behaviour even when the applied field is 
weak. This is to distinguish from weakly nonlinear materials, where the nonlinearity 
consists of a small correction to a leading h e a r  response. The latter case enjoys many 
analytic and numerical studies in the literature. Contrarily, with the exception of lasers, 
the response of strongly nonlinear systems is much less investigated. Here we study 
dielectric systems whose nonlinearity is of the form 

D(r, 1 )  = EIE(r, t ) /e leE(r ,  t )  (10) 

(1b) 
where E, p, E(r ,  I), B(r, 1 ) .  D(r, I) and H(r,  1 )  are, respectively, the dielectric permit- 
tivity, the magnetic permeability, the electric field, the magnetic inductance, the dis- 
placement field and the magnetic field. The rescaling scalar e has the same units as 
the electric field and is introduced to take care of the dimensions. Its magnitude is 
usually determined by the microscopic structure, but for simplicity it will be assumed 
unity and consequently omitted in the following. The particular power law relation 
between the field and the response has been shown to yield somewhat to exact analysis, 
and was therefore used to study the static properties of nonlinear conducting networks 
[ I ]  and both homogeneous and disordered dielectrics [2,3]. It has been shown that a 
unique solution to Maxwell's equations exists only for 6 + 1 > 0 [Z], while for p + 1 c 0 
metastable solutions were found [4]. 

Focusing here on the regime p + 1 > 0, I discuss the time dependent solution within 
such strongly nonlinear dielectric media. I show that Maxwell's equations admit 
oscillatory solutions for E and H, and derive their explicit forms in a finite medium. 
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I find the temporal and spatial frequencies of the resultant waves and show that these 
frequencies are related linearly. I discuss the energy flow and give the explicit form 
for the energy density and Poynting’s vector. Finally the velocity of propagation of a 
signal is addressed. It is shown that the characteristic lines in such a medium are not 
straight, but for oscillatory solutions may rather oscillate around the straight line in 
spacetime coordinates. 

Assume a semi-infinite space -m < x C m, -m < y < m and 0 < z < m, occupied by 
a non-conducting and nonlinear dielectric material, that is free of charges and satisfies 
the constitutive relations (1). A monochromatic electromagnetic wavet, propagating 
in the positive z-direction is incident on the x-y plane at z = 0-. The first aim is to 
find the coordinate- and time-dependence of the electromagnetic response that develops 
inside the nonlinear medium, and which satisfies Maxwell’s relations 

V x H = J,D/c ( 2 a )  
V X E -J,B/c. (2b)  

Without loss of generality one can align the x-y  axes in the directions of the orthogonal 
incident fields, such that E<(z = 0-, I )  = E,(O-, t ) x  and B,(z  = OF, t )  = B,(O-, t)y, where 
x and y are unit vectors in the x and y directions. The boundary conditions at z = 0 
consist of continuity of the tangential components of E and H, so 

E(0,  t ) = E , ( O , t ) + E , ( O , t )  H ( O , t ) = H , ( O , I ) + H , ( O , t )  

where the subscript r stands for the reflected wave. For z < 0 it is a textbook result that 

Hj(O-, I ) =  (Eo/p)”zEj(o-, t )  H,(O-, I )  = - (Eo/p)’ /2E,(O-,  t ) .  

So at z = O+ we have for the magnitude of the fields 

m E ( O + , t ) + H ( O + ,  t ) = m E ; ( O - ,  t )+H, (O- ,  I ) .  

The above defines unambiguously the matching of the fields at z = 0. The matching of 
the transmitted wave at a boundary z = W > 0 for a finite medium is similarly simple. 

Inspecting Maxwell’s relations it is easy to see that since the nonlinearity in (1) 
does not disturb the orientations of E and B, then these fields must remain in their 
original directions and mutually perpendicular within the nonlinear medium for z > 0. 
The directions of the response fields D and H follow those of E and B, respectively. 
One can now combine equations (2) and use (1) to eliminate the magnetic field, which 
gives an equation for the magnitude of E 

J,,E = ui2J,,(lEI@E) where uo = c/&. (3) 
To solve (3) I first assume that E ( z ,  t )  is separable into a product of spatial and 

temporal independent functions 
E (  z, f ) = R (  z )  T(  t )”( ’+’) .  (4) 

This separation yields a class of solutions that is of importance for finite systems, 
and also gives insight into the nature of a propagating signal discussed below. Substitut- 
ing the form (4) into (3) and dividing by [ R p + l T 1 / ( B + ’ l ]  yields two independent 
equations for R and T 

J,R = -KIRI’R ( 5 0 )  

J,,T = -Ku~~TI-”( ’+’~T ( 5 6 )  

t For the purpose of this discussion ‘monochromatic’ means B wave with a well defined frequency and 
wavelength, but whose form is not necessarily sinusoidal. 
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where K is a constant that relates the two functions. K is assumed positive in this 
discussion, but it is easy to show that for K < O  equations (5) give decreasing power 
law solutions. These parallel the familiar exponential decay in the linear case, and can 
be similarly interpreted. This issue is discussed elsewhere in more detail [ 5 ] .  

For the spatial function R one solves in a standard way: multiply both sides by 
J,R and integrate to obtain 

( J , R ) ~ + A I R ~ @ + ~  = U ,  (6 )  

where U ,  is a constant of integration and A = 2K/(p +2). Equation (6) can be regarded 
as an energetic relation describing a non-dissipative motion of a particle in a potential 
well. The first term on the LHS of (6) can then be identified as the kinetic energy and 
the second represents a potential term. For p>O (-1 < p  < O )  the potential well is 
steeper (shallower) than the parabolic form of the familiar harmonic oscillator (corres- 
ponding to @ = O ) .  It is therefore clear that (6) accommodates oscillatory solution. 
Thus we first note that when the kinetic term vanishes, the potential term equals U , ,  

which immediately provides the amplitude of R, 

aR = ( U ~ / A ) ' / ' ~ + ~ ' .  (7) 
Correspondingly, the amplitude of J,R is u:12. Equation (6) can be solved for z in the 
form of an indefinite integral over R 

where z, is a constant of integration to be determined by the boundary conditions. 
Changing variables to C=(A/uZ)lRIs" one gets 

where B,(a, b) ( O S  cs 1) is the incomplete beta function (see e.g. [6]). It is easy to 
show by expanding the integrand in (8) that near the origin (z-z0=O) R is linear in 
(z - zo), while near the maximum in R, Rmax - R - Iz - zm..I2. These behaviours are 
independent of p and generalize the linear case, when R is sinusoidal. R ( z )  is shown 
in figure 1 for p = -1/2 and 1, in the first quarter of the period. The rest of the period 
is facilitated by the possibility of both signs in the integral (8), combined with the 
possibility ofboth signs for R' in the denominator in (8).The entire period of oscillation 
is [4/(p+2)]B[l/(p+2), 1/21, where %(a, b )  =%c-r(a. 6) is the usual beta function 

1 y 0 2  0 4  II__/ 
4 

kz kz 

Figure 1. The solutions for ( A / U ~ ) ' ' ~ ~ + ~ ) R ,  for ,9 = - I f 2  and ,9 = 1. The values of k on 
the abscissa are sealed such that the pcnod is [4/(,9+2)1V3[1/(B+Z), 1/21, 
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[6]. This period reduces to 27r as expected for B = 0. For later use, let us also identify 
the analogue of the 'wavenumber', defined such that the period is unity (not Z T )  

Now let us turn to the temporal behaviour. The differential equation (sa) can be 
solved in the same manner as (sa) through multiplication by a,T and integration, 
which yields 

(J,T)2+AI(T11B+2)/1B+') = U, (11) 

where U, is a constant of integration and A, = Av&~ + 1). Very similarly to equation 
(6), for all -1 < p  this relation describes a non-dissipative oscillatory behaviour in a 
generally non-quadratic potential well (except for p =O). The amplitude of T can be 
found by considering the instant when J,T = 0, 

(12) lB+I)/(B+Zl,  ar = (%/Ai) 

From equations (4). (7) and (12) we can now deduce the total amplitude of the electric 
field 

1/(8+2) 

V 3 P  + 1) 

Exactly as above, equation (1 1) can be inverted to solve for the time t 

where q = ( A , / U , ) ~ T ( ' ~ + ' ) ~ ~ ~ + ~ ~ ,  and to is some initial time. When T is expressed in 
terms of 1, relation (14) yields the expected oscillatory behaviour with a period of 
[4(p+I)/(p+Z)]B((p+l)/(p+Z), I/?). As expected this period also reduces to 27r 
when p = 0. The frequency of this oscillation can he deduced from (14) 

In the linear case the ratio w / k  gives the dispersion relation and the phase velocity 
so it is of interest to consider this ratio here. Using equations (IO) and ( 1 5 )  yields 

which reduces to the usual uo in the linear case as it should. Expression (16) yields a 
spectacular interpretation: since Eo and p depend neither on time nor on spatial 
coordinates w is linear in k 

The first implication of this intriguing result is that despite being strongly nonlinear, 
a non-dissipative medium can sustain a persistent standing wave. Namely, if one pumps 
a wave of some frequency o at z = 0 onto a medium, confined between z = 0 and 
z = W < m, the result is a standing wave. This standing wave will assume definite 
periodicities that are integer multiples of the basic period, just as in the linear case. 
But unlike the linear case a simple linear combination of these solutions is not a 
solution also because the superposition principle does not apply. The second 
ramification relates to the intensity dependence. Relation (16) shows that increasing 
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the amplitude Eo of the incident wave at z = 0 decreases (increases) the phase velocity 
for /3 > 0 (- 1 < /3 < 0). Thus one can modulate the wavenumber k of such a standing 
wave by varying the amplitude Eo rather than the frequency o of the source. It is not 
unusual to find that nonlinearity couples frequency and amplitude. However, here we 
have an exact relation between the two, rather than a truncation of some expansion 
in a small parameter. 

So the electric field inside the nonlinear medium has been found to oscillate both 
in space and time, with the oscillating functional form being the inverse of the 
incomplete beta function with respect to its index. Regarding the boundary conditions, 
we note that for the above calculation to remain valid first the incident wave at z = so 
has to be prearranged such that it follows the same form as R ( z  = zo)T(t = to)”(’+’). 
If this is not taken care of one may end up with a mismatch at the boundary leading 
to a possible dispersion at z = Oc. Since the superposition principle cannot be applied 
in our medium, such a situation complicates the calculation drastically. Secondly, the 
reflected amplitude at zo should be equal to the incident. 

Next let us consider the behaviour of the magnetic field H( z, 1 )  within the nonlinear 
medium. Rewriting Maxwell’s equations (2) in terms of the functions R and T, 
integrating and using equations (9, ( 6 )  and (11) H can be found explicitly 

& E ( U&,)’/’ 
H = *-a,R a,T = i 

CK CK 

The expressions within the square roots are the canonical wave solutions to the 
energetic equations (6) and (11). which vary with z and f between 0 and 1. The 
amplitude of H is then the prefactor, which can be identified, using (13), as 

Having found the explicit forms of the electric and the magnetic fields, I now 
proceed to discuss the energy stored in the electromagnetic field and its flow in the 
nonlinear medium. Consider Poynting’s vector defined by 

S=(c /4m)Ex H. (19) 

The divergence of S can be easily calculated in any general medium (see e.g. [7]) 

divS+(Hoa,B+Eoa,D)/4r=O 

and in the case of the nonlinear constitutive relations (I), can be written as 

div S+J,U = O  (20) 
where 

is exacfJy the energy density in the system. It should be emphasized that although one 
can write equation (20) for any nonlinear system, U need not, and generally does not, 
coincide with the energy density in the system. Thus within a period of oscillation the 
energy density is exchanged between the magnetic and electric fields. However, the 
presence of the non-unity factor in front of the magnetic energy indicates that when 
H is maximal (and E vanishes) the energy density is different (smaller for p > 0 and 
larger for 0 1  p > -1) than when E is maximal (and H vanishes). 
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It should be stressed that by assuming a separable solution, the above discussion 
focused implicitly on the case of a standing, rather than a propagating, wave. I now 
turn to consider the propagation of a signal in such a medium. In the linear case the 
fields E and H can be written as functions of the reduced variable x = zf vof, which 
shows that a signal of a well defined unique frequency will propagate in the speed of 
light vo both forward and backward in the corresponding medium (complications 
arising when several modes propagate [8] are avoided here by considering only one 
frequency). The question is: can one identify a quantity that is the analogue of the 
propagation velocity of the signal in our case? Let us assume that there exists such a 
velocity up. The field E can be written then as a function of the reduced variable 
.$ = ( t  - to) - (z - zo)/ vp (to simplify the notation only forward propagation is con- 
sidered). The first partial derivatives of E can be rewritten as 

J,E = 
1 + ( z - z0)dE (1/ YO) E’ 

where dE = d/dE represents derivative with respect to the explicit dependence on E 
and where E’ is the derivative of E with respect to the reduced variable 6. Assuming 
th2t ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ : , ~ ? ~ ‘ ~  dees “et vznish \vP have 

a,E = - ( 1 / v e ) ~ , E  

which, combined with the identity J,E/J,E = - l / ( d z / J o E ,  leads to 

It follows that ve is the velocity along the trajectories of constant field E in the Z-f plane. 
I now claim that 

vp = V , I E I - ~ ’ ~ / ~  (24)  

and proceed to prove it by showing that this expression is self-consistent and solves 
Maxwell’s equations. Identifying ]/U: = ( p / c 2 ) d E D  and using equation ( 2 0 )  one has 

J,H = - ( c / p ) ( l / ~ ; ) J , E .  

Using (23)  in (25) and changing variables yields 

J 

which can be easily checked by differentiation with respect to time and comparing 
with equation (2b). Explicitly; this relation yields for the magnitude of H 

which coincides with equations (17) and (18) up to a phase shift. Expression (26) also 
shows that in the case of a propagating signal, H is in phase with E (rather than in 
antiphase as in the case of a standing wave), exactly as in the linear case. 

Further, this calculation shows that any function of .$ solves Maxwell’s equations 
for E and H. This generalizes the linear case result, where any function of z - v0t is 
a solution, depending on the initial conditions. 
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So by writing E in terms of 6 the problem is reduced from being described by two 
variables (I, i )  to just one. This reduction may seem cumbersome due to the dependence 
of 6 on E through vs. but it is still useful as it provides insight when analysing the 
stability of the form of a propagating signal in such a medium. This issue is beyond 
the scope of the present paper and is discussed elsewhere [ 5 ] .  I will only remark here 
that a signal propagating with a velocity that follows (24) may evolve into a frontal 
or rear shock-wave-like form. 

The mean velocity of propagation (up), can be found in two ways: one is by 
averaging (25) directly over z and 1, which gives (ve)= vo(E-8'2) / (p+1) ' /2-  E,"'. 
Another way is to consider the propagation of the energy flux through the media. 
Relation (20) (which is general, as mentioned above) has the form of a continuity 
equation and, when averaged over z and t, constitutes the conservation of energy in 
the system. The velocity of propagation is then simply ( S ) / (  U). Using S and U for 
the previous case of separable solution yields 

which varies with the same power of the field amplitude as in the first method. 
As expected, this power vanishes in the linear case, leading to the familiar field- 
independent constant velocity. 

Thus, ve indeed represents a iocai and instantaneous veiocity of propagation of 
the solution inside the nonlinear medium, and it varies with the spatial and temporal 
coordinates, tracing the variation of the field itself. Information can be carried by this 
solution, e.g. by introducing a perturbation at some f and z. Although, unlike in the 
linear case, the propagation of a general perturbation is difficult to analyse, this 
perturbation will distort the field, and such a distortion can be detected at another 
location and later time. This information propagates with the average velocity, and 
hence the instantaneous velocity is not the most important quantity to the passage of 
information over extended distances. 

To conclude, I have analysed the electromagnetic response of a strongly nonlinear 
dielectric medium. I have presented exact wave solutions to Maxwell's equations, 
whose functional form has been derived explicitly. The temporal frequency of oscilla- 
tion o has been shown to vary linearly with the analogue of the wavenumber k. This 
indicates that such a nonlinear medium can sustain a standing wave. The ratio o / k  
(phase velocity) within the nonlinear medium has been shown to depend on the 
intensity of the incoming wave through a power law form, which allows one to modulate 
the wavelength inside the medium by varying the intensity of the source wave, rather 
than varying its frequency. The energy flux and Poynting's vector have been discussed 
for these solutions. The velocity derivative & / a t  along trajectories of constant field in 
rl-^ - .-a"..- L^^ La--. P,..."rl.^ L-" ":"...I* -,...,-.. ,.+-+La G-lA ;"*n"o;*., "..., 
LUG L - ,  p,'l,,r , I l l >  urr,, l"ULlU ,U vc a ".."pC y v w c 1  "L L 1 . l  ,.I." &.LL'L'".L, L V L  al.,y &C"G'.P. 

solution. In particular, when the field oscillates this velocity traces this oscillation and 
consequently the characteristic lines of constant field may also oscillate periodically 
around the straight line. Some points remain unclear in the propagating case regarding 
the stable form of the signal. The simplicity in the linear case stems from the easy 
decomposition of the plane wave in x = z - woi into a sum of two separable periodic 
functions in lu and of. Such a decomposition is not available to us in the present 
nonlinear problem, and this question is currently under study. 
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